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Spatial Point Patterns

Lecture #1

Point pattern terminology

 Point is the term used for an arbitrary location

 Event is the term used for an observation

 Mapped point pattern: all relevant events in a study 

area R have been recorded

 Sampled point pattern: events are recorded from a 

sample of different areas within a region
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Objective of point pattern analysis

 Determine if there is a tendency of events to exhibit a 

systematic pattern over an area as opposed to being 

randomly distributed

 Point data often have attributes, but right now we are 

only interested in the location in point pattern analysis

 Does a pattern exhibit clustering or regularity?

 Over what spatial scales do patterns exist?

Types of distributions

 Three general patterns

 Random - any point is equally likely to occur at any location 

and the position of any point is not affected by the position of 

any other point

 Uniform - every point is as far from all of its neighbors as 

possible

 Clustered - many points are concentrated close together, and 

large areas that contain very few, if any, points
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RANDOM UNIFORM CLUSTERED

Types of distributions

Methods

 “Exploratory” analysis

 Visualization (maps)

 Estimate how intensity of point pattern varies over an area

 Quadrat analysis, kernel estimation

 Estimate the presence of spatial dependence among events

 Nearest neighbor distances, K-function

 Modeling techniques

 Statistical tests for significant spatial patterns in data, compared 

with the null hypothesis of complete spatial randomness (CSR)

 Much of the time we do both!
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How Bailey & Gatrell see it

 Exploring 1st order properties

 Measuring intensity – based on the density (or mean number 

of events) in an area

 Quadrat analysis

 Kernel estimation

 Exploring 2nd order properties

 Measuring spatial dependence – based on distances of points 

from one another

 Nearest neighbor distances

 K-function

Modeling techniques

 We can conduct statistical tests for significant patterns in 

our data

 H0: events exhibit complete spatial randomness (CSR)

 Ha: events are spatially clustered or dispersed

 What is complete spatial randomness? 

 What are we comparing our point pattern to?
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Complete spatial randomness

 CSR assumes that points follow a homogeneous Poisson process

over the study area

 The density of points is constant (homogeneous) over the study area

 For a random sample of subregions, the frequency distribution of the 

number of points in each region will follow a Poisson distribution

 # of points in an given subregion is the same for all subregions in study area

 # of points in a subregion independent of # of points in any other subregion

Some notes on R

> library(maptools)

> library(rgdal)

> library(shapefiles)

> library(spatstat)

> library(splancs)

> workingDir = "C:/Users/Eroot/Quant/R"
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Splancs and Spatstat in R

 Use different data file formats for analysis

 Both need a set of “points” and a study area “boundary”

 Splancs
> library(shapefiles)

> border <- readShapePoly(paste(workingDir, 

"/shapefiles/FLBndy.shp", sep=""))

> flbord <- border@polygons[[1]]@Polygons[[1]]@coords

> str(border)

> flinv<-readShapePoints("C:/Users/Elisabeth 

Root/Desktop/Quant/R/shapefiles/FL_Invasive.shp")

> flinvxy<-coordinates(flinv)

Splancs and Spatstat in R

 Spatstat
> library(shapefiles)

> library(maptools)

> flinv<-

readShapePoints("C:/Users/Eroot/Quant/R/shapefiles/ 

FL_Invasive.shp")

> flpt<-as(flinv,"ppp")

> border <- readShapePoly(paste(workingDir, 

"/shapefiles/FLBndy.shp", sep=""))

> flbdry<-as(border,"owin“)

> flppp<-ppp(flpt$x,flpt$y,window=flbdry)
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Sample dataset plot

 Dataset: Location of 

Cogon Grass 

(invasive species in 

FL)

> plot(flppp, axes=T)

Quadrat methods

 Divide the study area into subregions of equal size

 Often squares, but don‟t have to be

 Count the frequency of events in each subregion

 Calculate the intensity of events in each subregion
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Quadrat methods

Quadrat method

 Compare the intensity variation over R
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To test for CSR, calculate the test statistic 

for quadrat (2):

m = # of quadrats

s2 = observed variance

x = observed mean

Compare to 2 distribution with m-1 

degrees of freedom

x
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Quadrats in R

 Done using spatstat package

> qt <- quadrat.test(flppp,     

nx = 10, ny = 10)

> qt

Chi-squared test of CSR using 

quadrat counts

X-squared = 1239.057, df = 89, 

p-value < 2.2e-16

> plot(flppp)

> plot(qt, add = TRUE, cex = 

.5)
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Weaknesses of quadrat method

 Quadrat size

 If too small, they may contain only a couple of points

 If too large, they may contain too many points

 Actually a measure of dispersion, and not really pattern, 

because it is based primarily on the density of points, and 

not their arrangement in relation to one another

 Results in a single measure for the entire distribution, so 

variations within the region are not recognized

Kernel estimation

 Believe it or not, we already talked about this with GWR!

 Calculating the density of events within a specified search 
radius around each event

 A moving three-dimensional function (the kernel) of a given 
radius (bandwidth) „visits‟ each point in the study area

 Use kernel to weight the area surrounding the point 
proportionately to its distance to the event

 Sum these individual kernels for the study region

 Produce a smoothed surface

 Variety of different kernels

 Bivariate quartic most common
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Kernel estimation

• Creating a smooth surface for each kernel

• Surface value highest in the center (point location) and

diminishes with distance…reaches 0 at radius distance

Kernel estimation

 s is a location in R (the study area)

 s1…sn are the locations of n events in R

 The intensity at a specific location is estimated by:

 Summed across all points si within the radius ()
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Each kernel type has a different equation 

for the function k, for example:
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Kernel estimation

 The kernel (k) is basically a mathematical function that 

calculates how the surface value “falls off” as it reaches 

the radius

 There are lots of different kernel functions

 Most researchers believe it doesn‟t really matter which you use

 Most common in GIS is the quartic kernel

 Summed for all values of di which are not larger than 
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At point s, the weight is

3/2 and drops smoothly 

to a value of 0 at 

http://en.wikipedia.org/wiki/File:Kernel_uniform.svg
http://en.wikipedia.org/wiki/File:Kernel_triangle.svg
http://en.wikipedia.org/wiki/File:Kernel_quartic.svg
http://en.wikipedia.org/wiki/File:Kernel_exponential.svg


3/11/2010

13

Kernel estimation
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Individual “bumps”

Adding up the “bumps”

A few notes

 Like GWR, we can used fixed and adaptive kernels

 Fixed = bandwidth is a specified distance

 Adaptive = fixed number of points used

 Results are sensitive to change in bandwidth

 When bandwidth is larger, the intensity will appear smooth and 

local details obscured

 When bandwidth is small, the intensity appears as local spikes 

at event locations

 No agreement on how to select the “best” bandwidth

 prior information about underlying spatial process

 comparison of various bandwidths

 using Mean Square Error (in R)
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Kernel estimation in R

 Can be done in both splancs and spatstat

 splancs = quartic kernel

 spatstat=gaussian kernel

 Mean standard error one way to find “optimal bandwidth”

> mse<-mse2d(flinvxy,flbord, 100, 600)

> plot(mse$h, mse$mse, xlab="Bandwidth", ylab="MSE", 

type="l", xlim=c(100,600), ylim=c(-30,50))

> i<-which.min(mse$mse)

> points(mse$h[i], mse$mse[i])
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Kernel estimation in R

 Need to make a grid to “dump” kernel estimates into
 The Sobj_SpatialGrid() function in maptools takes a maxDim= 

argument, which indirectly controls the cell resolution

> sG <- Sobj_SpatialGrid(border, maxDim=400)$SG

> grd <- slot(sG, "grid")

> summary(grd)

 Can also create a GridTopology object from scratch:
> poly <- slot(border, "polygons")[[1]]

> poly1 <- slot(poly, "Polygons")[[1]]

> coords <- slot(poly1, "coords")

> min(coords[,1])

> min(coords[,2])

> grd <- GridTopology(cellcentre.offset=c(616593,531501), 
cellsize=c(150,150), cells.dim=c(400,400))

> summary(grd)

Kernel estimation in R

 Using splancs
> k0 <- spkernel2d(flinvxy, flbord, h0=400, grd)

> k1 <- spkernel2d(flinvxy, flbord, h0=600, grd)

> k2 <- spkernel2d(flinvxy, flbord, h0=800, grd)

> k3 <- spkernel2d(flinvxy, flbord, h0=1000, grd)

> df <- data.frame(k0=k0, k1=k1, k2=k2, k3=k3) 

> kernels <- SpatialGridDataFrame(grd, data=df)

> summary(kernels)

> gp <- grey.colors(5, 0.9, 0.45, 2.2)

> print(spplot(kernels, at=seq(0,.00001,length.out=20),

col.regions=colorRampPalette(gp)(21)))

 Using spatstat
> plot(density(flppp, sigma = 600))
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Nearest neighbor analysis

G-function

 Simplest measure and is similar to the mean

 Examine the cumulative frequency distribution of the 

nearest neighbor distances
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G-function

The shape of G-function tells us the way the events 

are spaced in a point pattern

 Clustered = G increases 

rapidly at short distance

 Evenness = G increases 

slowly up to distance where 

most events spaced, then 

increases rapidly

 How do we examine 

significance (significant 

departure from CSR)?
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How do we tell if G is significant?

 The significance of any departures from CSR (either 

clustering or regularity) can be evaluated using simulated 

“confidence envelopes”

 Simulate many (1000??) spatial point processes and 

estimate the G function for each of these

 Rank all the simulations

 Pull out the 5th and 95th G(r) values 

 Plot these as the 95% confidence intervals

 This is done in R!

G
(r

)

radius (r)

95th

5th
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G estimate in R
> r=seq(0,350,by=50)

> G <- envelope(flppp, Gest, r=r, nsim = 59, rank = 2)

> G

Pointwise critical envelopes for G(r) 

Edge correction: “km” 

Obtained from 59 simulations of CSR 

Significance level of pointwise Monte Carlo test: 2/60 = 0.03333

Data: flppp

Entries:

id      label     description

-- ----- -----------

r       r distance argument r

obs obs(r)    observed value of G(r) for data pattern

theo theo(r)   theoretical value of G(r) for CSR

lo      lo(r)     lower pointwise envelope of G(r) from simulations

hi      hi(r)     upper pointwise envelope of G(r) from simulations

> plot(G)

G estimate in R

Clustered pattern (above the envelopes)

Below envelopes = regular pattern

In envelopes = homogeneous

distribution (CSR)
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Nearest neighbor analysis

F-function

 Select a sample of point locations anywhere in the study 

region at random

 Determine minimum distance from each point to any event in 

the study area

 Three steps:

1. Randomly select m points (p1, p2, …, pn)

2. Calculate dmin(pi, s) as the minimum distance from location pi

to any event in the point pattern s

3. Calculate F(d)
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F-function

 Clustered = F(r) rises 

slowly at first, but more 

rapidly at longer distances

 Evenness = F(r) rises rapidly 

at first, then slowly at longer 

distances

 Examine significance by 

simulating “envelopes”
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F estimate in R
> r=seq(0,350,by=50)

> F <- envelope(flppp, Fest, r=r, nsim = 59, rank = 2)

> plot(F)

lty col key   label                                           meaning

obs 1   1  obs obs(r)           observed value of F(r) for data pattern

theo 2   2 theo theo(r)                 theoretical value of F(r) for CSR

hi     3   3   hi   hi(r) upper pointwise envelope of F(r) from simulations

lo     4   4   lo   lo(r) lower pointwise envelope of F(r) from simulations
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F estimate in R

Clustered pattern (below the envelopes)

Above envelopes = regular pattern

Within envelopes = CSR

Comparison between G and F
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K function

 Limitation of nearest neighbor distance method is that it 

uses only nearest distance

 Considers only the shortest scales of variation

 K function (Ripley, 1976) uses more points

 Provides an estimate of spatial dependence over a wider range 

of scales

 Based on all the distances between events in the study area

 Assumes isotropy over the region

K function

 Defined as:

  = the intensity of events (n/A)

event)chosen randomly  ofh  distance w/in events((#
1

)( EhK



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How do we estimate the K-function

1. Construct a circle of radius h around each point event (i)

2. Count the number of other events (j) that fall inside this 

circle

3. Repeat these two steps for all points (i) and sum results

4. Increment h by a small amount and repeat the computation





ji ij

ijh

w

dI

n

R
hK

)(
)(ˆ

2

number of points

area of R

edge correction

the proportion of circumference of circle   

(centered on point i, containing point j)

=1 if whole circle in the study area

dummy variable

1 if dij ≤ h

0 otherwise

Interpreting the K-function

 K(h) can be plotted against different values of h

 But what should K look like for no spatial dependence?

 Consider what K(h) should look like for a random point 

process (CSR)

 The probability of an event at any point in R is independent of 

what other events have occurred and equally likely anywhere 

in R
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Interpreting the K function

 Under the assumption of CSR, the expected number of 

events within distance h of an event is:

 K(h) < h2 if point pattern is regular

 K(h) > h2 if point pattern is clustered

 Now we can compare K(h) to h2

 How do we do this?

2)( hhK  the radius of 

the circle

The density of events should be

evenly distributed across all circles

Interpreting K with L

 This L-function is nothing more than a standardized 

version of the K function

 Transforms the K function so we can easily interpret it

 Compare it to 0

 L(h) = 0 if point process is random

 Peaks of positive values = clustering

 Troughs of negative values = regularity

 Significance of any departures from L=0 evaluated using 

simulated “confidence envelopes”
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K function in R
> L <- envelope(flppp, Lest, nsim = 59, rank = 2, global=TRUE)

> L

Simultaneous critical envelopes for L(r) 

Edge correction: “iso” 

Obtained from 59 simulations of CSR 

Significance level of  Monte Carlo test: 1/60 = 0.0166667

Data: flppp

Entries:

id      label     description

-- ----- -----------

r       r distance argument r

obs obs(r)    observed value of L(r) for data pattern

theo theo(r)   theoretical value of L(r) for CSR

lo      lo(r)     lower critical boundary for L(r)

hi      hi(r)     upper critical boundary for L(r)

> plot(L)

K function in R
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Real world situations

 In the real world, the location of events is often related to 

underlying patterns

 Population centers

 Events that may not seem to cluster in space, but cluster in 

space time

 There are many (many many) variations of point pattern 

analysis

 Often called “multivariate point pattern” analysis

 Comparing distributions of multiple sets of points


